本文共 1325 字,大约阅读时间需要 4 分钟。
Problem Description
Multiple query, for each n, you need to get
n i-1
∑ ∑ [gcd(i + j, i - j) = 1]
i=1 j=1
Input
On the first line, there is a positive integer T, which describe the number of queries. Next there are T lines, each line give a positive integer n, as mentioned above.
T<=1e5, n<=2e7
Output
Your output should include T lines, for each line, output the answer for the corre- sponding n.
Sample Input
4
978
438
233
666
Sample Output
194041
38951
11065
89963
Source
2018 Multi-University Training Contest 10
思路:
变换差不多就是这样,于是对于每一个i就变成了求2i的欧拉函数除2了,求一下前缀和就行。
#include<bits/stdc++.h>using namespace std;typedef long long ll;const int N=2e7+5;ll euler[N<<1],sum[N],prim[N<<1];void get_euler(int n){ //欧拉函数 memset(euler, 0, sizeof euler); euler[1] = 1; int id = 0; for(int i = 2; i < n; ++i) { if(!euler[i]) { euler[i] = i - 1; prim[id++] = i; } for(int j = 0; j < id && prim[j]*i <n; ++j) { if(i % prim[j]) { euler[i*prim[j]] = euler[i] * (prim[j]-1); } else { euler[i*prim[j]] = euler[i] * prim[j]; break; } } }}int main(){ int n,T; get_euler(N<<1); sum[1]=0; for(int i=2;i<=N;++i) sum[i]=euler[2*i]/2,sum[i]+=sum[i-1]; scanf("%d",&T); while(T--) { scanf("%d",&n); printf("%lld\n",sum[n]); }}
转载地址:http://sqewz.baihongyu.com/